Thursday, 22 June 2017

Exponentiell Gleitender Filter

29 September, 2013 Gleitender Durchschnitt durch Faltung Was ist gleitend Durchschnitt und was ist es gut für Wie ist die gleitende Mittelung durch Faltung durchgeführt Moving Average ist eine einfache Operation, die gewöhnlich verwendet wird, um das Rauschen eines Signals zu unterdrücken: Wir setzen den Wert jedes Punktes auf den Wert Durchschnitt der Werte in seiner Nachbarschaft. Nach einer Formel: Hier ist x die Eingabe und y das Ausgangssignal, während die Größe des Fensters w ist, die ungerade sein soll. Die obige Formel beschreibt eine symmetrische Operation: Die Proben werden von beiden Seiten des aktuellen Punktes genommen. Unten ist ein Beispiel aus dem wirklichen Leben. Der Punkt, auf dem das Fenster gelegt wird, ist tatsächlich rot. Werte außerhalb x sind Nullen: Um zu spielen und sehen die Auswirkungen der gleitenden Durchschnitt, werfen Sie einen Blick auf diese interaktive Demonstration. Wie man es durch Faltung erkennt Wie Sie vielleicht erkannt haben, ist die Berechnung des einfachen gleitenden Mittels ähnlich der Faltung: In beiden Fällen wird ein Fenster entlang des Signals geschoben und die Elemente im Fenster zusammengefasst. Also, geben Sie ihm einen Versuch, die gleiche Sache zu tun, indem Sie Faltung. Verwenden Sie die folgenden Parameter: Die gewünschte Ausgabe ist: Als erster Ansatz versuchen wir, was wir durch Faltung des x-Signals durch den folgenden k-Kernel erreichen: Der Ausgang ist genau dreimal größer als erwartet. Es ist auch ersichtlich, dass die Ausgabewerte die Zusammenfassung der drei Elemente im Fenster sind. Es ist, weil während der Faltung das Fenster entlang geschoben wird, werden alle Elemente in ihm mit einem multipliziert und dann zusammengefasst: yk 1 cdot x 1 cdot x 1 cdot x Um die gewünschten Werte von y zu erhalten. Wird die Ausgabe durch 3 geteilt: Durch eine Formel mit der Teilung: Aber wäre es nicht optimal, die Teilung während der Konvolution zu machen Hier kommt die Idee, indem wir die Gleichung umordnen: So werden wir den folgenden k Kernel verwenden: Auf diese Weise werden wir Erhalten Sie die gewünschte Ausgabe: Im Allgemeinen: wenn wir gleitenden Durchschnitt durch Faltung mit einer Fenstergröße von w machen wollen. Verwenden wir den folgenden k-Kernel: Eine einfache Funktion, die den gleitenden Durchschnitt ausführt, ist: Eine Beispielnutzung ist: Dokumentation Dieses Beispiel zeigt, wie gleitende Durchschnittsfilter und Resampling verwendet werden, um die Auswirkung von periodischen Komponenten der Tageszeit auf die stündliche Temperaturablesung zu isolieren , Sowie unerwünschte Leitungsgeräusche aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters, so dass jeder Punkt gleich gewichtet ist und 124 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu müssen Sie zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahieren. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiteres gemeinsames Filter folgt der Binomialexpansion von (12,12) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomial-Filter zu finden, falten Sie 12 12 mit sich selbst und konvergieren dann iterativ den Ausgang mit 12 12 eine vorgeschriebene Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wählen Sie Ihr LandDokumentation In diesem Beispiel wird gezeigt, wie gleitende Durchschnittsfilter und Resampling verwendet werden, um die Auswirkungen von periodischen Komponenten der Uhrzeit auf die stündliche Temperaturmessung zu isolieren und unerwünschte Linienrauschen aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters, so dass jeder Punkt gleich gewichtet ist und 124 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiteres gemeinsames Filter folgt der Binomialexpansion von (12,12) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomialfilter zu finden, falten Sie 12 12 mit sich selbst und konvergieren dann iterativ den Ausgang mit 12 12 eine vorgeschriebene Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wähle dein Land


No comments:

Post a Comment